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Social bees harbor a simple and specialized microbiota that is spa-
tially organized into different gut compartments. Recent results on
the potential involvement of bee gut communities in pathogen
protection and nutritional function have drawn attention to the im-
pact of the microbiota on bee health. However, the contributions of
gut microbiota to host physiology have yet to be investigated. Here
we show that the gut microbiota promotes weight gain of both
whole body and the gut in individual honey bees. This effect is likely
mediated by changes in host vitellogenin, insulin signaling, and
gustatory response. We found that microbial metabolism markedly
reduces gut pH and redox potential through the production of short-
chain fatty acids and that the bacteria adjacent to the gut wall form
an oxygen gradient within the intestine. The short-chain fatty acid
profile contributed by dominant gut species was confirmed in vitro.
Furthermore, metabolomic analyses revealed that the gut commu-
nity has striking impacts on the metabolic profiles of the gut com-
partments and the hemolymph, suggesting that gut bacteria
degrade plant polymers from pollen and that the resulting me-
tabolites contribute to host nutrition. Our results demonstrate
how microbial metabolism affects bee growth, hormonal signaling,
behavior, and gut physicochemical conditions. These findings in-
dicate that the bee gut microbiota has basic roles similar to those
found in some other animals and thus provides a model in studies of
host–microbe interactions.
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Honey bees (Apis mellifera) provide a critical link in global
food production as pollinators of agricultural crops (1), and

their economic value is over $15 billion annually in the United
States alone (2). Honey bee populations have undergone elevated
colony mortality during the last decade in the United States,
Canada, and Europe (3). A potential role of gut microbial com-
munities in the health of honey bees has recently become more
widely appreciated (4). Perturbation of the gut microbiota leads
to higher mortality within hives and greater susceptibility to a
bacterial pathogen, suggesting a crucial role of normal microbiota
in bee health (5). Honey bees are associated with specific in-
testinal microbiota that is simpler than the microbiota found in
mammals but shares some features, including host specificity and
social transmission (6) and a shared evolutionary history of bac-
terial and host lineages (7, 8). The bee gut is dominated by eight
core bacterial species that are spatially organized within specific
gut regions. Few bacteria colonize the crop and midgut; the
hindgut (ileum and rectum) harbors the greatest abundance of
bacteria. The ileum, a narrow tube with six longitudinal folds, is
dominated by two Gram-negative bacterial species: Snodgrassella
alvi, a nonsugar fermenter forms a layer directly on the gut wall,
together with Gilliamella apicola, a sugar fermenter that resides
more toward the center of the lumen (9). The distal rectum is
dominated by the Gram-positive Lactobacillus spp (10).
In both insects and mammals, the gut microbiota can possess a

large repertoire of metabolic capabilities and can contribute sub-
stantively to dietary carbohydrate digestion within the intestinal
ecosystem (11). Short-chain fatty acids (SCFAs), namely acetate,
propionate, and butyrate, produced by the gut microbiota as main

fermentation products of dietary fiber accumulate in the human
colon in concentrations up to 80–130 mM (12) and serve as a
major energy source for intestinal epithelial cells (13) or as the
main respiratory substrate of the host (14). Moreover, microbial
metabolites can have a profound effect on gut physiology; for
example, their effects on oxygen concentration, pH, and redox
potential can be essential for host health (15). As neuroactive
compounds, SCFAs produced by the gut microbiota can affect
neural and immune pathways of the host and thereby influence
brain function and behavior (16).
In the case of honey bees, genome-based investigations showed

that G. apicola strains potentially digest complex carbohydrates
(i.e., pectin from pollen cell wall) that are otherwise indigestible
by the host (17). A recent study documents thatG. apicola strains
can also use several sugars that are harmful to bees (18). How-
ever, how the bee gut microbiota affects host physiology and the
gut microenvironment has not yet been described. Hence, we
compared germ-free (GF) honey bees to those with a conven-
tional gut community (CV) to identify how the gut microbiota
affects weight gain, expression of genes underlying hormonal
pathways, gut physicochemical conditions, and metabolite pools
in the gut and hemolymph.

Results and Discussion
Gut Microbiota Promotes Host Body and Gut Weight Gain. To observe
effects of the microbiota on growth of individual hosts, we per-
formed serial measurements of whole-body wet weight in the
presence and absence of the gut microbiota. GF and CV bees
were obtained from pupae that were removed from hives, allowed
to emerge in sterile laboratory conditions, and then fed either
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sterilized food or sterilized food inoculated with the gut content of
conventional adult nurse bees. This procedure yields GF bees
with <105 bacteria per gut consisting of an erratic mix of bacterial
species versus CV bees with >108 bacteria per gut and consisting
primarily of core bee gut species, as in naturally inoculated hive
bees (19, 20). Although GF and CV bees showed similar survi-
vorship in laboratory experiments, CV bees attained greater body
weight (Fig. 1A) and achieved a weight gain 82% higher than that

of GF bees (Fig. 1B). After 15 d, the wet weights of both midgut
and ileum were also larger in CV bees than in GF bees and were
similar to those of nurse bees collected from hives (Fig. 1C). In
contrast, rectum weights were not significantly different and were
more variable, probably because of variable levels of pollen and
waste accumulation in this gut compartment (Fig. 1C). These re-
sults indicate that the presence of conventional gut microbiota is
required for normal body and gut weight gain during the days
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Fig. 2. Physicochemical conditions and SCFA profiles in the guts of GF and CV bees. (A) Radial profiles of oxygen concentration in the ileum of GF (n = 3) and
CV (n = 3) honey bees from different hives. The central regions of CV ileums are always absolutely anoxic (0% oxygen). Deviation for each value is typically less
than 0.2% oxygen. Depth refers to the distance between the electrode tip and the surface of the agarose. The schematic representation of the oxygen
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ileum. (B) Transmission electron micrographs of the CV ileum epithelium with a bacterial layer. (C) Microelectrode profiles of pH and redox potential along
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Fig. 1. Gut microbiota increases honey bee whole-
body weight, gut weight, hormonal signaling, and
sucrose sensitivity. (A) Whole-body wet weight
growth curves of GF (n = 45) and CV bees (n = 49)
originated from four different hives (the colony
of origin was not statistically significant). (B) Daily
weight gains of GF and CV bees after feeding
with sterilized food or food supplemented with
hindgut samples of hive nurse bees (day 1 to day 15).
(C) Weights of different gut compartments of GF,
CV, and hive nurse bees (n = 25). Bars indicate mean
values of 10–15 pooled guts of bees from different
hives (GF, n = 4; CV, n = 4) and hive bees from dif-
ferent hives (n = 3). (D) Differential expression of ilp,
inR, and Vg genes in the head or abdomen of GF
and CV bees originating from different hives. n = 3.
(E) Distribution of sucrose-response thresholds of GF
(n = 27) and CV (n = 41) bees shown as a violin plot.
The colony of origin was not statistically signif-
icance. Each circle indicates a bee response to the
provided concentration of sucrose. In A–D, **P <
0.01, ***P < 0.001 (Mann–Whitney u test for the
indicated comparisons); error bars indicate SD. In E,
***P < 0.001 (χ2 test). NS, not significant.
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following emergence from the pupal stage. A similar effect of gut
microbiota has been documented in humans and mice (21, 22),
and the commensal microbiota also influences the systemic de-
velopment of Drosophila (23). Although the fitness effects of this
weight gain were not measured directly at the colony level, sev-
eral observations suggest that the greater increase in weight in
the presence of microbiota is beneficial. As observed in previous
studies, all bees gained weight during the first 10 d following
emergence (24), but we found that the gain was almost halved
for bees deprived of gut microbiota (Fig. 1A). Larger mass may
assist in the initial tasks as nurses within the hive, whereas older
bees (>20 d) are known to lose weight as they transition to
foraging (24, 25).

Insulin/Insulin-Like Signaling and Sucrose Sensitivity. Weight gain in
honey bees has been shown to be associated with insulin insulin/
insulin-like signaling (IIS) (26). The IIS pathway plays a key role
in insect growth, reproduction, and aging (27) and is a regulator
of nutrient homeostasis and behavior in honey bees (28, 29).
The honey bee genome contains genes encoding two insulin-like
peptides (ILPs) and two putative insulin receptors (InRs) for
these peptides (30). In addition, vitellogenin (Vg), an egg yolk
protein, interacts with the IIS pathway to regulate bee nutritional
status (31). The ILPs are preferentially expressed in the heads of

worker bees, whereas InRs and Vg are more highly expressed in
abdomens (32).
We examined the expression levels of the two ILP genes (ilp1

and ilp2) in heads of 7-d-old bees and of two InR genes (inR1 and
inR2) and one Vg gene in the abdomens of the same bees. The
ilp1 and Vg genes were expressed 5.8 and 4.9 times higher in CV
than in GF bees, respectively, and ilp2 and inR1 also increased
expression in CV bees (Fig. 1D). Thus, CV bees have enhanced
insulin production and responsiveness. The IIS pathway responds
to diet, and ilp1 expression is highest on a protein-rich diet;
moreover, bees fed on this diet obtain more body weight (26). Our
results suggest that the gut bacteria supply amino acids, which
increase IIS gene expression and weight gain. Bees on high-
protein diets exhibit harmful weight gain and short lifespans
(26); however, the similar survival of CV and GF bees indicates
that the weight gain of CV bees does not affect longevity. In
contrast, the expression of inR2 was not significantly altered,
suggesting that it is unresponsive to nutrient manipulations as
shown for ilp2 (33, 34).
We also determined how the presence of microbiota impacts

the overall transcriptome of gut epithelial cells. Of 10,189 genes
detected in the RNA sequencing analysis, 221 host genes are
significantly more highly expressed in CV bees (Dataset S1). In-
terestingly, the most significantly up-regulated gene belongs to the
low-density lipoprotein receptor superfamily (Fig. S1 and Dataset
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S1), which encodes the Vg receptor in Drosophila (35). However,
the Vg receptor is usually expressed in the ovary, suggesting that
the transcripts originated from the residue of ovaries with the
dissected guts. Nevertheless, such stimulation is consistent with
the increase in Vg expression in the abdomen.
The IIS pathway regulates the behavior of worker honey bees,

including division of labor and sucrose sensitivity (29, 36). Sucrose
sensitivity is an indicator of energy status and satiety in honey bees
(37). By measuring the proboscis extension response of both CV
and GF bees (Movie S1), we found that the gut microbiota sig-
nificantly elevates sucrose sensitivity: More CV bees responded to
lower concentrations of sucrose (i.e., CV bees are “hungrier” than
GF bees) (Fig. 1E). Our combined results provide evidence that
the gut microbiota of honey bees stimulates IIS and Vg expression,
which in turn affects bee satiety and ultimately promotes host
weight gain. This observation is consistent with results showing
that IIS promotes growth in other gut microbiota models such as
Drosophila (23) and mammals (38).

Physicochemical Conditions. The intestines of insects together with
their symbiotic microbes can be viewed as minute ecosystems
characterized by complex physicochemical conditions. We ex-
amined these conditions in the bee gut by using Clark-type, glass
pH and Redox electrodes with a tip size of 50 μm to measure the
oxygen status, pH, and redox potential in each gut compartment.
All compartments of CV bee guts and the midgut and rectum of
GF bees were entirely anoxic (0% oxygen) in their centers. In

contrast, trace oxygen was detected in the center of the ileum of
GF bees (Fig. 2A). For a more fine-grained view of how the
microbiota affects oxygen levels within the ileum, we determined
the radial oxygen profiles for the ileums of GF and CV bees.
Oxygen concentration in the CV ileum the decreased rapidly
from the gut wall inward, reaching 0% when the microsensor tip
was only about 150–200 μm below the exterior surface of the gut
wall. Thus, the ileums of CV bees contain a microoxic periphery
around an anoxic center (Fig. 2A). By contrast, oxygen concen-
tration was still 1% in the center of the GF ileum. Although gut
epithelial cells can contribute to oxygen consumption, the dif-
ferent oxygen gradients of CV and GF ileums indicate that the
major oxygen consumers must be resident bacteria in the peripheral
region of the gut lumen.
A favorable, anoxic environment is crucial for the anaerobic

microorganisms in most animals’ digestive tracts (39). Anoxia can
be accomplished easily when the intestinal volume is large, and
the ileums of honey bees possess a surface area:volume ratio of
6,700 m2/m3 that is much larger than that of human intestine or
rumen (40). The inner wall of the honey bee ileum is associated
with a bacterial layer formed by S. alvi (10), a non–sugar-fermenting
Betaproteobacteria (Fig. 2B). The observed sharp drop in oxygen
might result from S. alvi’s consumption of oxygen penetrating
from outside or secreted from host tissue. This idea is supported
by in vitro tests showing that S. alvi uses acetate to fuel its oxygen-
consuming respiratory activity (Fig. S2A), as shown for gut wall-
colonizing bacteria in human (41). The O2 consumption rate of
S. alvi wkB2 is 4.1 ± 0.8 × 10−5 pmol·min−1·cell−1 in buffer sup-
plemented with acetate, which is higher than that of Stenoxybacter
acetivorans, an O2 consumer located in the peripheral region of
termite hindguts, and that of Citrobacter sp. strain RFC-10 (Fig.
S2B) (42). Not surprisingly, no O2 was consumed in succinate- or
glucose-supplemented buffer, because S. alvi does not use these as
energy sources (Fig. S2A). S. alvi is an obligate aerobe (9), and
genome-wide transposon insertion (Tn-Seq) screening has shown
that the ntrX/ntrY two-component oxygen sensor is essential for
host colonization (43). Considering the high abundance, periph-
eral localization in the gut, obligately aerophilic nature (9), and
restriction to acetate as oxidizable energy sources, S. alvi must be
responsible for the maintenance of anoxia in the gut, which is
crucial for appropriate metabolism of other gut symbionts.
The bee gut microbiota also causes both reduced pH and re-

dox potential (Fig. 2C), reflecting bacterial metabolic activity.
Axial profiles of pH showed greater acidity in CV bees than in
GF bees in the center of each gut region, whereas the pH in-
creases along the midgut and decreases toward the ileum and
rectum in both (Fig. 2C). Especially in the ileum and rectum,
where most bacteria localize, the pH values are lower in CV bees
(around 5.2) than in GF bees (around 6.0), suggesting that the
difference reflects microbial activity. In both types of guts,
the redox potential is positive throughout the gut even though
the gut is anoxic (Fig. 2C). In experiments on mammalian systems,
colonic pH and redox status have important physiological effects
on Ca2+ availability and on the composition of the gut community
(44). A major cause of this reduced colonic pH is active fermen-
tation resulting in significant increase of SCFAs (45).

Gut Metabolites. We investigated the composition of SCFAs in gut
compartments of GF and CV bees. The metabolite pools from the
different gut compartments differ strongly between GF and CV
bees, demonstrating the role of the gut microbiota as the main
producer of SCFA in vivo (Fig. 2D). In the CV ileum and rectum,
the prevailing fermentation product is acetate (114–137 mM)
(Table S1), which also is the most abundant SCFA observed in
human intestine (46) and which has been shown to enhance gut
epithelial barrier functions (47). By contrast, GF ileum and rectum
show accumulation of malate, although in lower amounts; succi-
nate was present only in CV rectum (Table S1). Thus, the gut
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microbiota impacts host physiology. Because the redox potentials
are always positive, we did not detect hydrogen production in the
guts. In all compartments of the GF gut, the homogenates contain
high concentrations of glucose and fructose. However, these sug-
ars are much lower in the homogenates of CV ileums and rectum,
indicating that they are consumed by the symbiotic bacteria. He-
molymph metabolite profiles also differ between CV and GF bees,
suggesting that gut bacteria affect host metabolism. Although
trace amounts of formate were detected in hemolymph of both
CV and GF bees, butyrate (22.8 mM) was detected only in the CV
hemolymph. In mammals, butyrate is an important fermentation
product produced by the gut microbiota (48) and has been shown
to serve as the main energy source for colonocytes (49). The ab-
sence of butyrate in the bee gut suggests that it is absorbed and
used by the host.
The different gut fermentation profiles between GF and CV

bees might be shaped by oxygen status, as shown in cockroaches
(50). Indeed, in in vitro cultures of the two most abundant bee gut
fermenters, G. apicola and Lactobacillus sp., fermentation prod-
ucts were strongly dependent on oxygen status (Tables S2 and S3),
clarifying the differences in gut SCFA profiles (Fig. 2D). The
major fermentation product of G. apicola under ambient air is
malate, but with decrease of O2, G. apicola shifts to producing
more acetate and propionate (Table S2), as is consistent with the
in situ results. Although Lactobacillus species are considered to be
lactic acid producers (51), they produce substantial amounts of
acetate when headspace contains 2% of O2 (Table S3). The shift
from lactate to acetate formation with the presence of O2 has been
documented in Enterococcus strain RfL6 from termite gut (52).
Our results indicate that the resident gut bacteria contribute to the
major SCFAs detected in the hindgut.

Metabolomics. For a more in-depth understanding of the effects of
gut microbiota, we compared metabolite levels in separate gut
compartments and hemolymph for CV and GF bees using untar-
geted metabolomics by GC–MS analysis. The principal component
analysis (PCA) showed that the gut microbiota has a striking effect
on the gut metabolome, especially in the rectum and ileum (Fig. 3
A and E), where most gut bacteria reside (10). By contrast, he-
molymph samples were not clearly distinct between CV and GF
bees. In the ileum and rectum, aminovaleric acid is the compound
most elevated in CV bees in both the ileum (319-fold) and rectum
(84-fold) (Fig. 3 B and C and Dataset S2, A and B). Aminovaleric
acid is also a major product of microbial activity in the human gut
(53). Another notable enrichment in the CV ileum is for gal-
acturonic acid (Fig. 3C), the main constituent of pectin, indicating
pectin degradation by gut bacteria and corroborating the presence
of genes encoding enzymes that target pollen wall polysaccharides
(17). Galacturonic acid was not enriched in the CV rectum, sug-
gesting that it is degraded by the dense bacterial community. This
result is consistent with the ability of G. apicola strains to use
products of pectin degradation (18). In CV bees, adenosine was
elevated within the midgut, despite the very low levels of bacteria
colonizing this gut compartment (Fig. 3E and Dataset S2C).
Potentially gut colonization triggers endogenous production of
adenosine, which may reduce gut inflammation (54).
Although the impact on hemolymph is less than that on gut

compartments, when we analyzed the hemolymph samples sep-
arately the metabolite profiles also show a clear effect of gut
microbiota (Fig. 3D). Several amino acids are elevated in CV

hemolymph (Dataset S2D), suggesting that they are absorbed by
the host. Based on a previous mutational screen (43), biosynthetic
pathways for amino acids are crucial for host colonization, sug-
gesting that gut bacteria might contribute amino acids absorbed by
the host. Alternatively, host pathways for vitamin and amino acid
biosynthesis are among those significantly up-regulated in CV
bees (Fig. S3), suggesting that the presence of gut microbiota
stimulates host metabolism. The increased quantities of amino
acids in the CV hemolymph might reflect the stimulation of the
IIS pathway and subsequent weight gain, which has been linked to
an amino acid-supplemented food in honey bees (26). Thus, gut
symbionts may supply sufficient protein to affect hormonal sig-
naling and to promote weight gain of the hosts.

Conclusions
Our results show that the gut microbiota of young adult honey
bees promotes weight gain and that this effect is accompanied by
the enhanced expression of genes affecting hormonal titers and
by an increased sensitivity to sugar (Fig. 4). In addition, spatially
organized microbial communities maintain an oxic–anoxic gradient
in the gut with lowered pH and redox potential, effects similar to
those demonstrated for the human gut microbiota (11). Our ob-
servations of the involvement of gut bacteria in the maintenance of
gut physicochemical characteristics, SCFA production, and the di-
gestion of complex dietary components (e.g., pectin) reveal further
similarities between the gut microbiota of humans and honey bees
and provide perspectives for future studies using the bee gut model
for investigating host–microbe interactions. Further experimental
work is needed to determine the extent to which similar cellular
mechanisms underlie the observed similarities of gut microbiota in
these different animal hosts.

Materials and Methods
Detailed protocols are available in SI Materials and Methods. GF and CV bees
were obtained using the protocol described by Powell et al. (19). We
obtained GF bees by removing pupae from brood frames of four different
hives and allowing bees from each hive to emerge in a separate, sterile dish.
CV bees were obtained by feeding newly emerged bees with homogenates
of hindguts of nurse bees from their original hive. This inoculation method
was chosen because it yields CV bees with robust gut communities similar in
size and composition to those of normal bees sampled from hives (19, 20);
however, we cannot entirely rule out effects of other components of the
homogenized guts on the treatment bees. Bees were immobilized at 4 °C,
and the whole-body wet weight was measured with an electric balance. The
expression levels of genes encoding ILP, InR, and Vg were determined by
quantitative PCR from RNA extracted from the heads or abdomens of GF
and CV bees obtained as described above. Primers used in this study are
listed in Table S4. The responsiveness of individual bees to sucrose was
assessed by presenting sucrose solutions to the antennae. Examples of response
or lack of response are shown in Movie S1. SCFA concentrations within dif-
ferent gut compartments and hemolymph were measured by HPLC. The gut O2

concentrations, pH, and redox potential were measured using microsensors
connected to a four-channel amplifier (Unisense). Metabolomic profiles
were determined from extracted gut compartments at the University of
California, Davis using GC-MS as described by Fiehn and Kind (55).
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